Физиология роста мышц. Как заставить мышцы расти. Часть 2

Рост мышц – это цель каждого бодибилдера. Но мало кто знает, как запустить механизм роста мышц на вашем теле.

На днях решил еще глубже исследовать эту тему. Посмотрел курсы некоторых авторов, перечитал билютень Артура Джонса и обнаружил интересные вещи – они говорят тоже самое что и я, хотя другими словами.

muskuls

В этой статье я расскажу про физиологию роста мышц и про механизмы стимуляции которые я не указал в прошлой статье. Кстати обязательно ее прочтите, что бы глубже понимать процесс роста мышц и знать как на него повлиять.

Рост мышц. Как заставить мышцы расти. Часть первая

Что бы лучше донести до вас всю информацию, сначала я расскажу о физиологии, а потом расскажу как использовать эти знания для эффективных тренировок и быстрого роста мышц.

Я не медик и не биохимик, поэтому всё буду объяснять простыми словами, практически на пальцах.

Строение мышц


Synapse_diag3

  1. Аксон
  2. Нервно-мышечное соединение
  3. Мышечное волокно
  4. Миофибриллы

Аксон – это «провод» по которому к мышце поступает электрический сигнал от мозга.

Миофибриллы – это составные части клеток мышечной ткани. Именно они сокращаются и именно они травмируются при силовой нагрузке, превышающей привычную, что вызывает мышечную боль и последующий рост мышц.

Строение сократительной ткани мышц – миофибрилл

ПОЛНАЯ СТРУКТУРА МЫШЦ copy

Миофибриллы состоят из белков: актина и миозина. У человека толщина миофибрилл составляет 1-2 мкм, а длинна может достигать длинны всей мышцы.

Одна мышечная клетка обычно содержит несколько десятков миофибрилл. На долю миофибрилл приходиться 2/3 всей сухой мышечной массы.

muscls_3

Если еще углубиться в тему, то становиться ясно, что миофибриллы состоят из отдельных отсеков – саркомер.

Как сокращаются мышцы

саркомер  copy

На рисунке выше вы видите структуру саркомер. Голубым цветом обозначен актин, красным миозин. По краям саркомер есть особый белок к которому крепиться вся конструкция – z-диск. Миозин крепиться к z-диску с помощью белка— титина.

Головка миозина может двигаться под воздействием определенных химических реакций. Она сцепляется с актином и тянет его на себя, тем самым, саркомер уменьшается в длину. Так как саркомеры распологаются последовательно, как вагоны поезда, то их сокращение приводит к уменьшению длинны миофибрилл, и как следствие, мышцы.

Sarkomer a_jpg

Вот структура головки миозина

sarcomere4.gif

sarcomere4

Вот так происходит «гребок» головки (сокращении мышцы)

sarco01_animation1.gif

sarco01_animation1

На рисунке вы видите как головка миозина тянет на себя актин. Не забываем, что их несколько этажей и тянет не одна головка, а несколько, но каждая в свое время. Читайте дальше.

Единственное топливо для мышц это АТФ

В мышцах человека есть запас АТФ, но его хватает только на 10-12 секунд интенсивной работы, например поднятие штанги или быстрого бега. Дальше организму нужно путем химических реакций добывать АТФ для сокращения мышц из других веществ.

Есть три способа получения АТФ. Вот они (в порядке убывания скорости получение АТФ):

  • Расщепление креатинфосфата
  • Гликолиз (расщепление гликогена из мышц)
  • Окисление

Наверное пока вам непонятно, как наличие АТФ и строение мышц, о котором мы говорили выше, связанно с ростом мышц. Но подождите еще чуть-чуть подошли к самой сути. И вы узнаете какой тренинг поможет вам действительно стимулировать мышцы к росту, а какой должной стимуляции не даст.

Болят мышцы – значит растут!

Как только запас АТФ исчерпан в расход идет креатинфосфат, который быстро восполняет данный пробел. Но креатин тоже не вечный…. Если нагрузка продолжается, то организм начинает расходовать гликоген – запас глюкозы (углеводов) в мышцах). Этот способ значительно медленнее, зато запасов гликогена в мышцах намного больше, чем запасов креатина.

Одна молекула глюкозы расщепляется на две молекулы АТФ. Когда молекула АТФ достигает головки миозина, головка вступает в химическую реакцию и начинает тянуть на себя актин. Смотрите анимацию выше. Но для того, что бы отцепиться от актина и сделать новый гребок, головке нужна еще одна молекула АТФ. И она ее получает. Тогда миозин делает еще один гребок и т.д.

Но есть одна проблема: при получении АТФ из гликогена и креатинфоссфата выделяется кислота, которая мешает поступлению АТФ к миозиновым головкам. Соответственно не все головки успевают отцепится от актина и под действием нагрузки рвутся. Так мы получаем микротравмы и на следующий день испытываем мышечную боль.

Теперь самое интересное: для бодибилдинга самое важное получать от каждого рабочего сета такие микротравмы, потому что это единственный способ заставить мышцы расти. Мы еще подробнее на этом остановимся.

Забыл сказать – первые два способа получения АТФ действуют только при аэробной нагрузке, т.е. при высокой интенсивности тренинга, третий –окисление, используется во время слабых аэробных нагрузках: легкий бег, ходьба, велосипед и т.д. При этом задействуются разные типы мышечных волокон.

Типы мышечных волокон

Есть два типа мышечных волокон: белые (сильные, быстрые) и красные (выносливые, но слабые).

Красные волокна мышц

В отличие от белых этот тип волокон использует окисление для получения АТФ. Окисляется, если я не ошибаюсь гликоген. И получается 38 молекул АТФ, которых хватает на большее время. Но что бы их получить, нужен кислород, поэтому красные мышечные волокна имеют большое кол-во сосудов. Реакция окисления происходит в митохондриях, которых гораздо больше, чем у белых волокон. Митохондрии служат в клетках для получения энергии с помощью кислорода.

Данный способ получения АТФ очень медленный, поэтому красные мышечные волокна не подходят для интенсивной работы, где требуется быстрый выброс АТФ.

В красных волокнах не происходит накопление молочной кислоты! Поэтому они такие выносливые.

В красных волокнах малое кол-во
миофибрилл и гликогена, но большое кол-во митохондрий. Гликогена требуется меньше, чем белым волокнам, потому что 1 молекула глюкозы при окислении дает 38 молекул АТФ. Но для передачи этой энергии
нужно больше времени, чем при гликолизе.

Белые волокна

Имеют малое кол-во митохондрий, большое кол-во миофибрилл, запасов гликогена и креатинфостфата.

Белым волокнам не нужен кислород для получения энергии (АТФ), поэтому такие нагрузки называются анаэробными, т.е. безкислородными.

Белые волокна вступают в работу только когда требуется приложить большое усилие и работы красных волокон будет недостаточно.

Так как 1 молекула глюкозы в белых волокнах дает всего 2 молекулы АТФ, то гликоген быстро расходуется, но так как не нужен кислород, этот процесс протекает очень быстро. Но есть и обратная сторона: быстрый расход гликогена способствует появлению болшого кол-ва молочной кислоты. Креатин при распаде тоже выделяет кислоту не помню какую.

Но главное, что среда из щелочной становиться кислой это затрудняет доставку АТФ (из-за чего рвутся части миозина) и заставляет нас чувствовать усталость.

Есть еще промежуточный тип мышечного волокна, так называемые розовые волокна, которые могут работать как с кислородом так и без него. Розовые волокна сильнее красных, но менее выносливые, слабее белых но более выносливее.

Зачем я это говорю? Все просто: в нашем теле есть все типы мышечных волокон, у каждого это индивидуально. У разных людей каждая мышца имеет разное кол-во тех или иных волокон. Не бывает так что бы мышца состояла только из белых или только из красных волокон.

Что бы достичь максимальных размеров мышц, за минимально е кол-во времени, нужно задействовать как можно большее кол-во мышечных волокон всех типов. Тогда эффект будет максимальным!

Пост получился длинный и про механизмы стимуляции я расскажу в следующем. А пока подведем итоги.

  • Мышца состоит из пучков
  • Пучки состоят из клеток
  • В каждой мышечной клетке есть миофибриллы – сократительная нить
  • Миофибриллы состоят из соркамер, в которых миозин цепляется за актин и начинает его тянуть
  • Что бы головка миозина притянулась к актину нужна молекула АТФ
  • Что бы головке отцепиться от актина нужна еще одна молекула АТФ
  • Работа мышц заставляет их забиваться продуктами распада (кислотами), что ухудшает доступ АТФ к миозину
  • Под действием нагрузки, если нет молекулы АТФ, головка, прикрепленная к актину не может отцепитсья и рвется
  • Поэтому болят мышцы
  • Без таких микротравм мышечный рост невозможен!
  • Что бы достичь быстрых результатов нужно развивать все мышечные волокна в теле.

Рост мышц обеспечивают микротравмы мышечного влокна. Какой способ лучше использовать для повышения интенсивности и роста мышц я рассражу в следующей статье. Не пропустите! Это самая важная тема в бодибилдинге!

Смотри еще

Инструменты страницы